Impact of Neighboring Residues on the pKa of Histidine 174

Parameter	pKa (int)	pKa (1/2)	Non	Charge
	_ , ,	_ 、 ,	Charged	Impact
			Impact	
H174 (ave)	4.37	4.75		
H174 (st	0.16	1.23		
error)				
D176 (ave)			-0.0044	0.467
D176 (st			0.01	0.014
error)				
R214 (ave)			0.303	-0.379
R214 (st			0.031	0.0368
error)				

in Plasmodium Falciparum Malate Dehydrogenase

Parameters are averages of 5 replicates. Calculations based on the subunit structure of Plasmodium falciparum Malate Dehydrogenase (5nfr.pdb). Replicate structures were using RefineD to generate 5 equivalent models of the structure. Each replicate was analyzed using H++ with an internal dielectric set at 10 and the solvent dielectric set at 80.

The impact of neighboring residues on H174 pKa values were calculated from the deconvoluted output of H++ which estimates the contributions of neighboring residues to the shifter pKa value of H174 from the canonical value for free Histidine (Pka = 6.0). The impact is calculated for the "non-titratable component of the amino acid (non-charged impact) and for the titratable component (charged impact).

Reference:

 Anandakrishnan, R., et al. "H++3.0: automating pK prediction and thepreparation of biomolecular structures for atomistic molecular modeling and simulations", Nucleic Acids Research, 2012, Vol. 40, Web Server issue W537–W541